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Connection between the Burgers equation with an elastic forcing term and a stochastic process
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In this paper, a complete analytical resolution of the one dimensional Burgers equation with the elastic
forcing term —xx+£(t), k € R is presented. Two methods existing for the case x=0 are adapted and general-
ized using variable and functional transformations, valid for all values of space and time. The emergence of a
Fokker-Planck equation in the method allows the establishment of a connection between the Burgers equation

and the Ornstein-Uhlenbeck process.
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I. INTRODUCTION

The Burgers equation is known to have a lot in common
with the Navier-Stokes equation. In particular, it presents the
same kind of advective nonlinearity, and a Reynolds number
may be defined from the viscosity term [1]. This nonlinear
equation is also frequently used as a model for statistical
theories of turbulence and shock waves, from which asymp-
totical behaviors may be determined in the limit of vanishing
viscosity [2,3]. The numerous applications of this equation
have led to focus on statistical behavior of solutions, in par-
ticular in the case of the forced Burgers equation [4—6]. The
Burgers equation may also appear in magnetohydrodynam-
ics, where the resolution presents additional difficulties due
to the nonlinear coupling between the Burgers equation and
the Maxwell equations [7,8]. Thus, from an analytical point
of view, the inhomogeneous version of the Burgers equation
is little studied, the complete analytical solution being
closely dependent of the form of the forcing term. Further-
more, while the solution of the one-dimensional homoge-
neous Burgers equation is well known (for a multidimen-
sional resolution see Ref. [9]), it is advisable to remind
briefly the integrable case of the following noisy Burgers
equation (inhomogeneous Burgers equation with a time-
dependent forcing term), which has been in the focus of quite
a number of studies [10-15]

{(7,14 +udu— vi,u=f(1),
u(x,0) = p(x).

It appears that the solution in this case may be obtained by
two methods. The first method lies on the Orlowsky-Sobczyk
(OS) transformations [16], where the inhomogeneous Bur-
gers equation (1) is transformed into a homogeneous Burgers
equation. Nevertheless, another equivalent method may be
used to solve this problem analytically. Using the well-
known Hopf-Cole transformation [17], an inhomogeneous
Burgers equation may be transformed into a linear equation:
the heat equation with a source term, which may be com-
pared to a Schrodinger equation with an imaginary time, and
a space-and-time dependent potential. Several methods have
been developed over past decades to treat this kind of equa-
tion. One of them, the time-space transformation (TST)
method, has been used in order to solve the Schrodinger
equation with a time-dependent mass moving in a time-
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dependent linear potential (Feng [18]). It is thus shown in
Ref [19]., the equivalence between the TST method and the
Orlowsky-Sobczyk method, that is to say, the possibility to
solve analytically by two equivalent ways, the Burgers equa-
tion with a forcing term in f(¢). The following diagram
shows this equivalence, where Heat-S designates the heat
equation with a source term, BE the Burgers equation, and
HC the Hopf-Cole transformation.

Inhomogeneous BE: f(r) Homogeneous BE

| ke

Heat — S(linear) Heat

—

This yields to presenting this paper as a continuation of the
previous existing methods. The two latest methods (OS and
TST) are adapted in order to solve the inhomogeneous Bur-
gers equation with a forcing term of the form —w’x+£(1),
where the value «? represents the string constant of the elas-
tic force. Let us note that Wospakrik and Zen [20] have
treated this problem, but only in the limiting case of vanish-
ing viscosity for the asymptotic mode, whereas the methods
presented here are valid in all cases. The outline of the paper
will be thus as follows: Sec. II will be devoted to the treat-
ment of an elastic term, first by the way of a TST method,
and then by using a generalized OS method. It is then shown
that a Fokker-Planck equation, associated to the Ornstein-
Uhlenbeck process, arises in the resolution by the TST
method. Consequently, an “adapted” Hopf-Cole transforma-
tion may be obtained for this case, and a physical interpre-
tation in the asymptotic limit is discussed. The connection
between the Burgers equation and the Ornstein-Uhlenbeck
process is in keeping with stochastic diffusion processes de-
scribed by Burgers’ dynamic (see e.g., Ref. [21].).

II. RESOLUTION FOR AN ELASTIC FORCING TERM

As underlined in the introduction, the TST method allows
us to solve a Schrodinger equation for some kinds of poten-
tials. So the inhomogeneous Burgers equation has firstly to
be transformed into such an equation. Starting from the fol-
lowing one-dimensional Burgers equation with a linear forc-
ing term
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{&,u +udu— vi u=—k’x+ f(t), @)
u(x,0) = @(x),
we apply a Hopf-Cole transformation of the form u(x,?)
==21[1/V¥(x,)]0,W(x,7) to obtain a heat equation with a
source term S

IV (x,t) = vd, Y (x,1) + S(x, )W, (3)

where S(x,t)=(x*/4v)x*>=[f(t)/2v]x+c(f), c(f) being an ar-
bitrary time-dependent function. This kind of equation al-
lows the application of a TST method based on several
changes of variables. In Ref. [19], and following Ref. [18], a
TST method has been used in order to solve a Schrodinger
equation with a linear potential. Here, a quadratic potential
appears in Eq. (3), so the method will consist this time to put

W(x,7) = P(x,1)e", (4)

with h(x,t)=a,x*+ay(t)x+as(t); a;, a,(t), and a;(r) being
constant or time-dependent functions to be determined. The
transformation (4) introduced in Eq. (3) gives

3,P = vd P +2vd.hd P+ P[vd h+ v(dh)*+S - 9,h].
(5)

Then, in order to cancel the factor of P, we put
vi h+ v(0h)? +S—dh=0, (6)

which gives a polynomial of second degree in x. This permits
us to obtain, respectively, the following relations:

2

4va%+K—:0, (7a)
4y
S
dva,a,— = —d, =0, (7b)
2v
2va, + vai +c—dy=0. (7¢)

Since Egs. (7) are satisfied, Eq. (5) is simplified to
8P =vd_ P +2vd.hi,P. (8)
We now apply to Eq. (8) the following change of variables

{y =r(t)x+q(1), ©)

t'=t,
which induces a transformation of Eq. (8) into
Oy P = Vrzﬁny +[(=#lr+4va))(y - q) + 2vra, — 4]9,P.

(10)
The simplification of this equation is made by putting

F—4va,r=0, (11a)

2vra, — ¢ =0. (11b)
Notice that the relation (7a) gives
K

=i 12

a l4v (12)

where i=\~1, with the result that the solution of Eq. (11a)
will be
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r(t) = e, (13)
Equation (11) being satisfied, we obtain
9P =vr*d,,P. (14)

Finally, the transformation

(t') = ft’ (s)ds, (15)
0

yields to the expected heat equation
3.P(y,7) = vd,,P(y,7). (16)

We will now show that the Orlowsky-Sobczyk method is
a particular case of the method employed here for an elastic
term: the generalized Orlowsky-Sobczyk (GOS) method. Let
us consider again Eq. (2), and let us introduce a new velocity
v=v(x,?) such as

u=vr(t) + ax + (1), (17)
where r(z), a, (1) are time-dependent functions or constants
determined later. The transformation (17) introduced in Eq.
(2) yields to

o[+ ar] + x[ K + &)+ [+ ay— fl+ rdp + rrvdp
+ arxdw + rid v — vrd v =0. (18)

In order to cancel the terms in v and x, and those only de-
pending on time, we put

F+ar=0, (19a)
K+ a?=0, (19b)
b+ ap—fF=0. (19¢)

Since the system (19) is verified, then Eq. (18) is simplified
into

rdv + rvdv + arxdv + rgdv — vrd, v =0.  (20)

Then, the same time and space change of variables as Eq. (9)
applied to Eq. (20) leads to

popv +dulrg + Pyl + (v - q)du[i+ ar] + r3v&yv - Vr3z?yyv

=0. (21)
Putting then
rg+rry=0 (22)
we obtain
1
ﬁ&,fv + 0,0 = vd,v. (23)

So the last transformation
t/
m(t') = f r(s)ds, (24)
0

gives rise to a homogeneous Burgers equation governing the
new velocity v
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CONNECTION BETWEEN THE BURGERS EQUATION...

AV + Vv = vd,v. (25)

From this, the HC transformation v=-2v(1/P)d,P yields
again to the expected heat equation

d.P(y,7) = vd,,P(y,7). (26)

Hence, both methods GOS and TST may be connected
thanks to a commutative diagram similar to the one of the
introduction, with a force —x%x+£(z).

III. DERIVATION OF AN ORNSTEIN-UHLENBECK
PROCESS

Let x(¢) be a stochastic variable satisfying the following
Langevin equation and describing an Ornstein-Uhlenbeck
process [22,23]:

dx —
— =—Kkx+\2vb(1), (27)
dt
where b(7) stands for a Gaussian white noise verifying the
standard conditions

(b())=0 and (b(1)b(¢")) = 8t —1"). (28)

Then, using a Kramers-Moyal expansion, a Fokker-Planck
equation may be obtained for the transition probability
P(x,1) [24]

A,P(x,t) = kd [xP(x,1)] + v, P(x,1). (29)

This equation is usually solved by Fourier transform, and the
solution P= P(x,x’,t) for the initial condition P(x,t|x",0)
=8(x—x") reads

It is shown in appendix that this solution may also be found
by the TST method. The interesting point lies in a connection
between the Ornstein-Uhlenbeck process [Eq. (29)] and the
Burgers equation (2) with f(¢)=0. In order to show this fact,
we apply the transformation

P(x,1) = W(x,1)e" 40 (31)

to the Fokker-Planck equation (29). This leads to the heat
equation

2.2
9V = 3 W + (f - ﬂ)w. (32)
2 4y

So, the Hopf-Cole transformation

u(x,t) =— 2v$&x‘lf(x, 1, (33)

transforms Eq. (32) into the inhomogeneous Burgers equa-
tion

A+ udu = vo u— K°x. (34)

From this result, the following consequences may be drawn.
This connection gives rise to a physical meaning of the TST
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method. Indeed, the function P introduced in the transforma-
tion (4) takes the sense of a transition probability for the
variable x(z). Then, considering both Egs. (31) and (33), we
obtain a relation between the velocity u and the transition
probability P

u(x,t)=-2 dP(x,t) — Kx, (35)

b
VP(x,t)
which is composed of a Hopf-Cole part and of a linear part.
Hence, this relation may be considered as a Hopf-Cole trans-
formation adapted to the Ornstein-Uhlenbeck process. More-
over, the asymptotic limit of P(x,x’,7) is given by (30)

2
lim P(x,x',1) = | £ exp(— ﬂ) , (36)
o0 2y 2v

and thus, from the relation (35), it can be seen that the
asymptotic limit of the velocity will read

lim u(x,?) = kx, (37)

(=00
which is a stationary solution. Thus, the velocity associated
to the Ornstein-Uhlenbeck process behaves asymptotically
lineary with x. This result being obtained is thanks to the
initial condition P(x,7|x’,0)=48(x—x"), which expresses the
necessary condition that, for example, a particle cannot be
initially at several positions. In other words, any initial con-
dition of the form P(x,t|x’,0)=Cdé(x—x'),CeR*, has a
physical meaning. We can, therefore, notice from (35), that
all theses initial conditions yield to the same result for the
value lim,_., u(x,7). It follows that the relation (37) may be
considered valid whatever the initial condition on the veloc-
ity may be. It can be concluded that an elastic forcing term
applied to the system gives rise to a stationary transition
probability in the asymptotic mode. Consequently, the effects
of the oscillations will decrease, even disappearing in the
long-time limit, and stabilize the system with a velocity pro-
portional to the displacement. The evanescence of the effect
of the force is due to the initial condition sensitivity of the
Burgers equation. We can see thereby on the system, a phe-
nomenon closely connected to the turbulence effect: the loss
of memory in the long-time limit.

IV. CONCLUSION

In this paper, we have presented the complete analytical
solution of the Burgers equation with an elastic forcing term.
The methods presented here have been used before but only
in the case of a time-dependent forcing term. For perspec-
tive, we can say that the generalization of the methods to any
order of power of x seems actually be a difficult task. Indeed,
a transformation of the form y — r(f)x+¢(t), has been intro-
duced in order to delete terms proportional to x. So this
transformation seems without effect when higher powers of x
appear. Moreover, the higher the degree, the more difficult
the resolution, due to the increasing number of variables to
be introduced. The second main result of the paper lies in the
existence of links between a fluid model (Burgers) and the
statistical physics (Ornstein-Uhlenbeck). Through a set of
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transformations, we have etablished a connection between
the Burgers equation for the velocity u=dx/dt and a Fokker-
Planck equation for the transition probability of the variable
x. From the Burgers equation (34), the transformation (35)
allows us to obtain directly the Fokker-Planck equation (29)
as a specific Hopf-Cole transformation. It appears that the
linear force, describing the Ornstein-Uhlenbeck process, sta-
bilizes the system in the asymptotic mode with a velocity
proportional to the force applied initially, whatever the initial
condition on the velocity may be. This result shows a char-
acteristic property of turbulence, i.e., the unpredictability of
a velocity field governed by the Burgers equation.
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APPENDIX: SOLUTION OF THE ORNSTEIN-UHLENBECK
PROCESS

We show that we can recover the solution (30) using our
TST method. Rewriting Eq. (29),

d,P =vd,.,P + kxd, P + kP, (A1)
we apply the change of variable
y=r(ox,
{t' =t. (42)
This yields to
P = vrzﬁny + (K - £>yr9yP + KP. (A3)

To cancel the term in J,P, we put obviously
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k="=0e () =en (Ad)
r
This leads to
9P =vr*d, P+ kP. (AS)
Then, putting
P(y,1") =0 (y,1")e" (A6)
followed by the transformation
t/
') = f r¥(s)ds, (A7)
0
we obtain the heat equation
3,0 = vd,,0. (A8)

Notice that the condition P(y,y’,0)=8(y—y’) implies that
O(y,y’,0)=68(y—y’). The fundamental solution of (A8) is
thus

O(y,7) =

"2

1
— exp| —
Va4mvr p[ 4vr

after which, putting y and 7 in place of their expression, it is
to say

y=xe,

1 , Al
7= (e - 1), (A1)
2k

we obtain

b { M} ALD
TN 2w -2 TP T (1= ey |

which is the same result as Eq. (30).
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